Page 65 - 《橡塑技术与装备》2022年4期
P. 65
综述与专论 胡佳伟 等·RAFT 聚合驱动自组装机理研究及展望
Macromolecules, 2012, 45, 6 753-6 765. assembly. J Am Chem Soc, 2014, 136, 11 100.
[20] Hill M. R, Carmean R. N, Sumerlin B. S. Expanding the [35] Semsarilar M, Jones E. R, Blanazs A.et al. Efficient
Scope of RAFT Polymerization: Recent Advances and New synthesis of sterically stabilized nano-objects via RAFT
Horizons. Macromolecules, 2015, 48, 5 459-5 469. dis persion polymerization of benzyl methacrylate in
[21] Blanazs A, Armes S. P, Ryan A. J. Self-Assembled Block alcoholic media. Adv Mater, 2012, 24, 3 378-3 382.
Copolymer Aggregates: From Micelles to Vesicles and their [36] Fi e l d i n g L . A, De r ry M. J, L a d m i r a l V. e t a l . R AFT
Biological Applications. Macromol. Rapid Commun., 2009, dispersion polymerization in non-polar solvents: facile
30, 267. production of block copolymer spheres, worms and vesicles
[22] Blanazs A, Madsen J, Battaglia G, et al. Mechanistic in n-alkanes. Chem Sci, 2013, 4, 2 081.
Insights for Block Copolymer Morphologies: How Do Worms [37] Moad G, Rizzardo E, Thang S. H. Living Radical
Form Vesicles? J. Am. Chem. Soc., 2011, 133, 16 581. Polymerization by the RAFT Process-A Second Update.
[23] Termonia Y. Entropy-driven self-assembly of nanoparticles Aust. J. Chem., 2009, 62 (11), 1 402-1 472.
into strings. Colloids Surf., A 2014, 447, 23. [38] St Thomas C, Guerrero - Santos R, D’Agosto F.
[24] Herfurth C, Malo de Molina P, Wieland C. et al. One-step Alkoxyamine-functionalized latex nanoparticles through
RAFT synthesis of well-defined amphiphilic star polymers RAFT polymerization-induced self-assembly in water.
and their self-assembly in aqueous solution. Polym. Chem., Polym. Chem. 2015, 6 (30), 5 405-5 413.
2012, 3, 1 606. [39] Moad G. RAFT polymerization to form stimuli-responsive
[25] Warren N. J, Armes S. P. Polymerization-Induced Self- polymers. Polym. Chem., 2017, 8 (1), 177-219.
Assembly of Block Copolymer Nanoobjects via RAFT [40] Jiang Y, Xu N, Han J. et al. The direct synthesis of
Aqueous Dispersion Polymerization. J. Am. Chem. Soc., interface-decorated reactive block copolymer nanoparticles
2014, 136, 10 174-10 185. via polymerisation-induced self-assembly. Polym. Chem.,
[26] Doncom K. E. B, W arren, N. J, Armes, S. P. 2015, 6 (27), 4 955-4 965.
PolysulfobetaineBased Diblock Copolymer Nano-Objects [41] Yeow J, Xu J, Boyer C. Polymerization - Induced
via Polymerization-Induced Self-Assembly. Polym. Chem., SelfAssembly Using Visible Light Mediated Photoinduced
2015, 6, 7 264-7 273. Electron Transfer-Reversible Addition-Fragmentation Chain
[27] Cunningham V. J, Alswieleh A. M, Thompson K. Transfer Polymerization. ACS Macro Lett., 2015, 4 (9),
L . Pol y(gl yc e rol m onom e t ha c ryl a t e ) - pol y (be nz yl 984-990.
methacrylate) Diblock Copolymer Nanoparticles via RAFT [42] Zeng R M, Chen Y, Zhang L, et al. Uncontrolled
Emulsion Polymerization: Synthesis, Characterization, and polymerization that occurred during photoinitiated RAFT
Interfacial Activity. Macromolecules 2014, 47, 5 613-5 623. dispersion polymerization of acrylic monomers promotes
[28] Thompson K. L, Mable C. J, Lane J. A: et al. Preparation the formation of uniform raspberry-like polymer particles.
of Pickering Double Emulsions Using Block Copolymer Polym. Chem., 2020, 11, 4 591.
Worms. Langmuir 2015, 31, 4 137-4 144. [43] Tan J, Sun H, Yu M.et al. Zhang L. Photo PISA: Shedding
[29] Thompson K. L, Mable C. J, Cockram A. et al. Are Block Light on Polymerization-Induced Self-Assembly. ACS
Copolymer Worms More Effective Pickering Emulsifiers Macro Lett., 2015, 4 (11), 1 249-1 253.
than Block Copolymer Spheres? Soft Matter., 2014, 10, 8 [44] L i u G, Qi u Q, She n W. e t a l . Aque ous di spe rsi on
615-8 626. polymerization of 2-methoxyethyl acrylate for the synthesis
[30] An Z. S, Shi Q. H, Tang W. et al. Facile RAFT Precipitation of biocompatible nanoparticles using a hydrophilic RAFT
Polymerization for the Microwave-Assisted Synthesis of polymer and a redox initiator. Macromolecules, 2011, 44
Well-Defined, Double Hydrophilic Block Copolymers and (13), 5 237-5 245.
Nanostructured Hydrogels. J. Am. Chem. Soc., 2007, 129, [45] Pioge S, Tran T. N, McKenzie T. G. et al. Sono-RAFT
14 493. PolymerizationInduced Self - Assembly in Aqueous
[31] Wan W M, Sun X L, Pan C Y. Morphology transition Di spe rsi o n: Synt he si s o f L CST t yp e T he rm ose nsi t i ve
in RAFT polymerization for formation of vesicular Nanogels. Macromolecules, 2018, 51 (21), 8 862-8 869
morphologies in one pot. Macromolecules, 2009, 42, 4 950. [46] Touve M. A, Figg C. A, Wright D. B. et al. Polymerization-
[32] Sun J T, Hong C Y, Pan C Y. Recent advances in RAFT Induced Self-Assembly of Micelles Observed by Liquid Cell
dispersion polymerization for preparation of block Transmission Electron Microscopy. ACS Cent. Sci., 2018, 4
copolymer aggregates. Polym Chem, 2013, 4, 873-881. (5), 543-547.
[33] Zhang W J, Hong C Y, Pan C Y. Fabrication of spaced [47] Blanazs A, Armes S. P, Ryan A. J. Self-Assembled Block
concentric vesicles and polymerizations in RAFT dispersion Copolymer Aggregates: From Micelles to Vesicles and their
polymerization. Macromolecules, 2014, 47, 1 664. Biological Applications. Macromol. Rapid Commun., 2009,
[34] Gonzato C, Semsarilar M, Jones ER. et al., Rational 30, 267–277.
synthesis of low-polydispersity block copolymer vesicles [48] Blanazs A, Ryan A. J., Armes S. P. Predictive Phase
in concentrated solution via polymerization-induced self- Diagrams for RAFT Aqueous Dispersion Polymerization:
年
2022 第 48 卷 ·15·