Page 81 - 2020-1
P. 81
环保节能与安全 孟程龙·不同促进剂对三元乙丙橡胶产品气味的影响
Effects of different accelerators on the odor of EPDM rubber products
Meng Chenglong
(Fuzhou Jingan Rubber Products Co. LTD., Fuzhou 350008, Fuzhou, China)
Abstract: Four types of accelerators A, B, C, and D were added to EPDM rubber respectively. They were
tested by vulcanization characteristics, physical properties, and olfactory methods, and are evaluated
according to the corresponding national standards and odor grade description. The experiment proved that
the general sulfur scorch time, vulcanization speed, degree of cross-linking and vulcanization flatness of the
sample A ordinary sulfur vulcanization system were good,followed by the comprehensive performance of
sample D , and the other two were the worst; Among them, the tensile strength and elongation at break of
sample D were the best. The deformation at 3 minutes was only inferior to the ordinary sulfur vulcanization
system, and better than the peroxy vulcanization system. The four types of accelerators have relatively low
overall odor scores under the test of 40℃ , and the odor is heavier when tested at high temperature of 80℃ ,
especially peroxy DCP vulcanization. On the one hand, the organic volatile substances were not completely
emitted at low temperatures, and they were emitted quickly at high temperatures, so that low-molecular
substances, CS 2 sulfides, amine sulfur compounds, benzothiazole, and irritating acetophenone are fully
emitted; After prolonged production stoppage and secondary vulcanization, the overall odor is reduced.
Key words: EPDM; odor; test; olfactory; grade
(R-11)
韩泰轮胎引入人工智能优化复合材料开发
Hankook Tire introduces artificial intelligence to optimize composite material development
韩泰轮胎表示,其已经开发了一种预测模型 — 虚拟复合材料设计(VCD)系统,用于利用人工智能的轮胎
复合材料特性,这将使新的复合材料开发周期缩短 50%。
据该公司称,VCD 系统使用的技术可预测复合材料的特性,并通过人工智能分析(该技术基于轮胎数据开
发过程中未经过实际测试的累积数据)得出材料的最佳组合。Hankook 轮胎表示,新系统将使新复合材料开发周
期缩短 50%。
由于轮胎胶是天然橡胶,合成橡胶和炭黑等 15 种以上材料的混合物,因此其开发过程非常复杂,具有不同
的性能取决于各种变量,包括温度,设备,组合顺序和压力以及每种材料的组合比例。通常,开发一种新复合材
料需要六个月至三年的时间,但是如果使用人工智能,则预计这一时间将减少 50%。
新的开发系统在云平台上运行,意图创建一个 “ 数字孪生体 ”,即现实生活中的物体的孪生体,重复将虚拟
仿真的结果反映到现实中,并在现实和虚拟现实之间相互影响,以找到改进的结果。亚马逊网络服务 (AWS) 和
谷歌的人工智能引擎 TensorFlow 等云计算平台分析了数以万计的数据,它们通过机器学习继续进化。
韩泰轮胎的创新工作始于一项内部研究项目,并通过与韩国顶级研究机构的合作而得以加速和巩固。
Hankook 今年初与韩国科学技术高等研究院(KAIST)签署了有关未来技术研究的协议,因此就该项目进行了合
作。从那时起,数据分析的准确性得到了极大的提高,目前显示出超过 95%的更高可靠性。
韩泰轮胎成功地将人工智能应用于预测复合材料的性能,正计划将该技术扩展到轮胎开发的整个过程,从材
料选择,设计,轮胎测试到包括批量生产在内的整个生产过程。此外,该公司计划基于整个轮胎行业生态系统中
的累积数据,加速引入基于数据的创新技术,这些数据涵盖了材料供求,设计,研发,测试,生产,分销(SCM)
和客户使用情况,不受某些发展领域的限制。
摘编自 “ 中国轮胎商务网 ”
(R-03)
年
2020 第 46 卷 ·31·