Page 64 - 《橡塑技术与装备》2022年9期
P. 64
橡塑技术与装备 CHINA RUBBER/PLASTICS TECHNOLOGY AND EQUIPMENT
Progress in Organic Coatings, 2021, 159: 106 446. 2020, 156: 104 731.
[7] Ai L, Yang L, Hu J, et al. Synergistic Flame Retardant [21] Wu Y, Liu A, Li W, et al. Synthesis of Carborane Acrylate
Effect of Organic Phosphorus–nitrogen and Inorganic Boron and Flame Retardant Modification on Silk Fabric Via Graft
Flame Retardant on Polyethylene[J]. Polymer Engineering & Copolymerization with Phosphate-containing Acrylate[J].
Science, 2020, 60(2): 414-422. Fire and Materials, 2019, 43(7): 880-891.
[8] Chen S, Ai L, Zeng J, et al. Synergistic Flame-retardant [22] Zhang Q, Zhang W, Huang J, et al. Flame Retardance
Effect of an Aryl Boronic Acid Compound and Ammonium and Thermal Stability of Wool Fabric Treated By Boron
Polyphosphate on Epoxy Resins[J]. Chemistryselect, 2019, Containing Silica Sols[J]. Materials & Design, 2015, 85:
4(33): 9 677-9 682. 796-799.
[9] Ai L, Chen S,Y ang L, et al. Synergistic Flame Retardant [23] Hou X, Xue Z, Xia Y. Preparation of a Novel Agar/sodium
Effect of Organic Boron Flame Retardant and Aluminum Alginate Fire-retardancy Film[J]. Materials Letters, 2018,
Hydroxide on Polyethylene[J]. Fibers and Polymers, 2021, 233: 274-277.
22(2): 354-365. [24] Zhang Q, Gu J, Chen G, et al. Durable Flame Retardant
[10] Miao Z, Yan D, Zhang T, et al. High-efficiency Flame Finish for Silk Fabric Using Boron Hybrid Silica Sol[J].
Retardants of a P–n-rich Polyphosphazene Elastomer Applied Surface Science, 2016, 387: 446-453.
Nanocoating on Cotton Fabric[J]. Acs Appl. Mater. [25] Zhang Q, Chen G, Xing T. Silk Flame Retardant Finish
Interfaces, 2021, 13(27): 32 094-32 105. By Ternary Silica Sol Containing Boron and Nitrogen[J].
[11] L i Y, Hu S, Wa ng D. Pol ym e r - b a se d C e ra m i f i a b l e Applied Surface Science, 2017, 421: 52-60.
Composites for Flame Retardant Applications: a Review[J]. [26] Gordon PG, Mcmahon DTW, Stephens LJ. Investigations
Composites Communications, 2020, 21: 100 405. Into the Mechanisms of Flame Retardation on Wool[J].
[12] Li Y, Deng C, Shi X, et al. Simultaneously Improved Flame Textile Research Journal, 1977, 47(11): 699-711.
Retardance and Ceramifiable Properties of Polymer-based [27] Liu Z, Li Z, Zhao X, et al. Highly Efficient Flame Retardant
Composites Via the Formed Crystalline Phase at High Hybrid Composites Based on Calcium Alginate/nano-
Temperature[J]. Acs Appl. Mater. Interfaces, 2019, 11(7): 7 calcium Borate[J]. Polymers, 2018, 10(6): 625.
459-7 471. [28] Zhang Z, Wu W, Zhang M, et al. Hydrothermal Synthesis of
[13] Huang Z, Ruan B, Wu J, et al. High-efficiency Ammonium 4zno·b 2 o 3 ·h2o/rgo Hybrid Material and Its Flame Retardant
Polyphosphate Intumescent Encapsulated Polypropylene Behavior in Flexible Pvc and Magnesium Hydroxide
Flame Retardant[J]. Journal of Applied Polymer Science, Composites[J]. Applied Surface Science, 2017, 425: 896-
2021, 138(20): 50 413. 904.
[14] Duan H, Chen Y, Ji S, et al. A Novel Phosphorus/nitrogen- [29] Ning Y, Guo S. Flame-retardant and Smoke-suppressant
containing Polycarboxylic Acid Endowing Epoxy Resin with Properties of Zinc Borate and Aluminum Trihydrate-filled
Excellent Flame Retardance and Mechanical Properties[J]. Rigid Pvc[J]. Journal of Applied Polymer Science, 2000,
Chemical Engineering Journal, 2019, 375: 121 916. 77(14): 3 119-3 127.
[15] Yu R, Liu J, Gao D, et al. Striking Effect of Nanosized [30] Mergen A, İpek Y, Bölek H, et al. Production of Nano Zinc
Carbon Black Modified By Grafting Sodium Sulfonate Borate (4zno·b2o3·h2o) and Its Effect on Pvc[J]. Journal of
on Improving the Flame Retardancy of Polycarbonate[J]. the European Ceramic Society, 2012, 32(9): 2 001-2 005.
Composites Communications, 2020, 20: 100 359. [31] Cai W, Mu X, Pan Y, et al. Facile Fabrication of Organically
[16] Zhang S, Chen H, Zhang Y, et al. Flame Retardancy of Modified Boron Nitride Nanosheets and Its Effect on
High-density Polyethylene Composites with P,n-doped the Thermal Stability, Flame Retardant, and Mechanical
Cellulose Fibrils[J]. Polymers, 2020, 12(2): 336. Properties of Thermoplastic Polyurethane[J]. Polymers for
[17] Hu X, Sun J, Li X, et al. Effect of Phosphorus–nitrogen Advanced Technologies, 2018, 29(9): 2 545-2 552.
Compound on Flame Retardancy and Mechanical Properties [32] Levchik S, Levchik G, Balabanovich A, et al. Mechanistic
of Polylactic Acid[J]. Journal of Applied Polymer Science, Study of Combustion Performance and Thermal
2021, 138(7): 49 829. Decomposition Behaviour of Nylon 6 with Added Halogen-
[18] Ni Y, W u W, Chen L, et al. How Hydrogen Bond free Fire Retardants[J]. Polymer Degradation and Stability,
Interactions Affect the Flame Retardancy and Anti-dripping 1996, 54(2): 217-222.
Performances of Pet[J]. Macromolecular Materials and [33] Wang X, Li L, Tong Y, et al. Synthesis of Core/shell
Engineering, 2020, 305(1): 1 900 661. Structured Zinc Borate/silica and Its Surface Charring
[19] Hu D, Zhou Q, Zhou K. Combined Effects of Layered for Enhanced Flame Retardant Properties[J]. Polymer
Nanofillers and Intumescent Flame Retardant on Thermal Degradation and Stability, 2021, 183: 109 432.
and Fire Behavior of Abs Resin[J]. Journal of Applied [34] Baltaci B, Çakal GÖ, Bayram G, et al. Surfactant Modified
Polymer Science, 2019, 136(46): 48 220. Zinc Borate Synthesis and Its Effect on the Properties of
[20] Cheng X, Wu Y, Huang Y, et al. Synthesis of a Reactive Pet[J]. Powder Technology, 2013, 244: 38-44.
Boron-ba se d Fl a m e Re t a rdant t o E nha nc e t he Fl a m e [35] Yurddaskal M, Celik E. Effect of Halogen-free Nanoparticles
Retardancy of Silk[J]. Reactive and Functional Polymers, on the Mechanical, Structural, Thermal and Flame Retardant
9
·14· 第 48 卷 第 期

